Tuesday, June 9, 2009

Pendulum

The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force. Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point. The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.

The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force. Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point. The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force.

Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point. The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force. Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point. The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force. Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point.

The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.The pendulum is able to work when the bob is raised to an angle larger than the point at which it is vertically suspended at rest. By raising the bob, the pendulum gains Gravitation Potential Energy or GPE, as in being raised, it is held above this point of natural suspension and so therefore is acting against the natural gravitational force. Once the bob is released, this gravitational force is able to act on it, thus moving it downwards towards its original hanging point. We can say therefore, that as it is released, the GPE is converted into Kinetic Energy (KE) needed for the pendulum to swing. Once the bob returns to its original point of suspension, the GPE has been totally converted into KE, causing the bob to continue moving past its pivot point and up to a height equidistant from its pivot as its starting point. The same factors affect the pendulum on its reverse swing. GPE gained after reaching its highest point in its swing, is converted into KE needed for it to return back to its natural point of vertical suspension. Due to this continuous motion, the bob creates an arc shaped swing. The movement of the pendulum is repeated until an external force acts on it, causing it to cease in movement. The pendulum never looses any energy, it is simply converted from one form to another and back again.

You can order a high-quality custom essay, term paper, research paper, thesis, dissertation, speech, book report or book review from our professional custom writing service. We have employed more than 700 highly qualified Ph.D. and Master's academic writers to provide students with professional academic writing help. Feel free to contact our company right now!

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.